订阅
纠错
加入自媒体

千亿蓝海生物基产业 :新材料应用加速,资本纷纷入局

2021-02-27 08:58
元气资本
关注

未来 10-20 年4万亿美元的经济价值将由合成生物主导。

本文为元气资本第79篇原创文章

分析师Rexi

核心内容

1、基因编辑相关应用领域十分广阔;

2、凯赛生物是国内首家合成物学产业化企业,通过对微生物进行基因编辑实现长链二元酸生产,成功逼退化学合成法生产商英威达;

3、蓝晶微生物本月获得来自高瓴创投与光速中国的B轮融资创纪录。

2月26日,国内合成生物学头部企业蓝晶微生物(Bluepha)完成了近 2 亿元人民币的 B 轮融资,高瓴创投、光速中国正式入局。该轮融资创下了国内合成生物学领域初创企业单笔融资的新纪录,也意味着公司的创新能力以及先发优势受到了资本市场的肯定。

近期,基因编辑公司也涨势愈猛,元气资本发现,基因编辑的应用领域很多,虽然全球范围内碱基编辑疗法尚无产品走向临床试验的阶段,但由于其具有治疗罕见病和肿瘤等医学难题的潜力,正在逐步受到大家的广泛关注。比如治疗基因突变的遗传病,如血友病、地中海贫血、眼科疾病、脑科疾病等,比如农业上开发耐旱的粮食作物。

基因编辑也不局限于医疗健康领域,事实上,基因编辑与合成生物学、生物基、免疫治疗、肠道菌群、塑料降解、对抗耐药等前沿的基因和生命科学技术都能串联起来。

麦肯锡全球研究所在2020年6月发布的报告《The Bio Revolution: Innovations transforming economies, societies, and our lives》中指出,全球经济中高达60%的产品可以由生物生产,而生物经济既有的400个应用场景,将在未来10-20年产生高达4万亿美元的直接经济影响,其中一半以上来自医疗卫生以外的领域。

2020年12月,全球基因编辑食品相继获批上市,基因编辑的应用似乎比我们预计来得快。这为公司、消费者和研究人员提供了机遇,降低了监管层面的壁垒和阻碍。

农业上,通过基因编辑技术可提高植物生长和农业产量的合成代谢、减少农业肥料的使用、提高作物的营养价值甚至实现利用光自养系统生产药物、化妆品原料等。我国多位专家表示,基因编辑能提高我国种子竞争力。

农业农村部科技教育司二级巡视员张文称,当前,以全基因组选择育种、转基因技术、基因编辑等为代表的生物育种技术已成为国际育种的前沿和核心,正在蓬勃迅猛发展。中国科学院上海植物逆境生物学研究中心主任、美国科学院院士朱健康表示,99.9%的基因编辑都是以“做减法”的方式进行,简单的做减法就培育出高产、优质、抗病的品种。

2020年12月14日,美国基因编辑猪获批上市,既可食用也可用来生产医疗产品。科学家通过基因工程手段,敲除了在猪细胞表面添加α-半乳糖(Alpha-gal)的蛋白酶,那些对肉类过敏的人群从此可以放心安全地食用基因编辑猪。此外,“GalSafe猪”(α-半乳糖甘酵素分子安全猪)还可以用来生产类似于肝素的药物,它的组织和器官还可能潜在地解决患者接受异种器官移植后的免疫排斥问题。

日本也于2020年12月11日通过了国内首个基因编辑食品的销售申请。这是由日本筑波大学和企业共同研发的一种基因编辑番茄,含有更多营养成分γ-氨基丁酸,预计最早将于2022年上市销售。γ-氨基丁酸是哺乳动物中枢神经系统中重要的抑制性神经传递物质,具有稳定情绪等功效。

国际资本市场也又开始关注生物领域。2020年诺贝尔奖颁给基因编辑,无疑给大家注射了一支 “兴奋剂”。一些投资者,像青睐 IT 行业的软银孙正义和比尔盖茨等也把 IT 技术带到了合成生物学,给资本市场带来了很多的信心。

元气资本认为,与2020年大热的“植物肉”概念类似,国内合成生物、生物基产业已开始被广泛关注、价值潜力已开始被深度挖掘,未来势必将快速发展。

根据财经涂鸦与元气资本的相关文章可知,人造肉第一股Beyond Meat(BYND.US)于2019年上市。国内资本于2020年开始关注这一领域,星期零2020年获得来自光速中国、云九资本、经纬中国等机构的3次融资,并和德克士联名植物肉汉堡,推到德克士2600家门店。(参考文章《详解植物肉赛道:中国「玩家」走到哪了?》)

基因编辑与合成生物学:环境友好材料的解决方案

2021年1月1日是全国塑料吸管禁令生效的第一天,上海餐饮店纷纷改用可降解吸管代替普通塑料吸管,以响应我国政府规划中提出的2060 年实现“碳中和”的长远目标。

而PHA,全称“聚羟基脂肪酸酯”,正是天然微生物合成的一种新材料,它拥有绿色低碳的全生命周期和不亚于传统石化塑料的性能,是其有力的替代品,目前已被蓝晶微生物应用在纸塑复合材料和吸管中。

2020年6月,麦肯锡在《生物革命:创新将改变经济、社会和我们的生活》报告中提到合成生物产业的未来价值,“未来 10-20 年,4万亿美元的经济价值将由合成生物主导。”

那么,合成生物学和CRISPR基因编辑有什么关系呢?合成生物学是通过基因工程等手段对微生物进行基因编辑以设计出特定代谢途径生产化学品的一门学科,而CRISPR还会更上游一些,属于一种更为基础的技术。

合成生物学是21世纪初期新兴的生物技术研究领域,在基因测序和DNA合成成本呈现数量级下降、生物基因数据规模呈现数量级提升的基础上,通过整合数学、物理和计算机等理性工具对生物细胞进行有意图的设计和改造,从而获得生物学目标功能,有望解决药物开发、医学诊断、分子和材料创新、能源替代、环境保护、食品和农业技术升级等生物相关方面的一系列难题。

随着合成生物学的高速发展,对菌种进行基因改造的技术已相对成熟,经过特定基因编辑后的大肠杆菌和谷氨酸棒状菌已广泛用于 PHA、PHB、PLA、戊二胺、丁二酸等化学品的生产。

高效的工业菌是实现规模化生物发酵的第一步,也是基础,配合后续发酵过程和分离纯化过程的优化,生物基化学品成本下降才得以实现,成本竞争力才逐渐凸显。

近年来,全球资本市场越来越关注合成生物领域,2015年该领域公司融资规模达到10亿美元,而在2018年达到近40亿美元。包括微软、软银等在内的国际知名企业近年来都有持续投资。

传统的化学公司也已经开始转型布局生物学领域,说明生物合成产业的需求正在日益增长。杜邦公司以 63 亿美元收购了食品营养及生物公司Danisco;拜耳与Ginkgo Bioworks 共同投资1亿美元创建Joyn Bio;日本的住友、三井、日本化药公司和三菱,韩国LG化工以及荷兰的DSM等寻找转型的巨头,都相继瞄准了合成生物学领域。

华为创始人任正非曾在某座谈会上所说,“将来新材料会像基因编辑一样,通过编辑分子,就能出来比钢铁还硬的材料”。

事实上,凯赛生物也已经通过基因编辑的手段解决了关键新材料生物合成的技术瓶颈,并且实现了新材料的大规模产业化。

1  2  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号