订阅
纠错
加入自媒体

金属材料激光增材制造技术及在航空发动机上的应用

2014-12-26 08:29
Minor昔年
关注

  “十一五”期间,北京航空航天大学在飞机钛合金大型整体主承力结构件激光快速成形工艺研究、工程化成套装备研发与装机应用关键技术攻关等方面取得了突破性进展,提出了大型金属构件激光直接成形过程“内应力离散控制”新方法,初步突破大型金属构件激光快速成形过程零件翘曲变形与开裂“瓶颈难题”;突破激光快速成形钛合金大型结构件内部缺陷和内部质量控制及其无损检验关键技术,飞机构件综合力学性能达到或超过钛合金模锻件,例如,激光快速成形TA15钛合金缺口疲劳极限超过钛合金模锻件32~53%、高温持久寿命较模锻件提高4倍(500℃/480MPa持久寿命由锻件不足50h提高到激光成形件230h以上),特别是经后续特种热处理新工艺获得“特种双态组织”(图2所示)后,其综合力学性能进一步显著提高,疲劳力纹扩展速率降低一个数量级以上(图3)。

  此外,激光快速成形出TA15、TC4、TC21、TC18、TC2等钛合金先进飞机大型整体主承力关键结构件、A-100等超高强度钢起落架等飞机关键构件、TC11、TC17、Ti60等钛合金整体叶盘等航空发动机关键部件并在飞机研制和生产中得到成功应用。

  西北工业大学自1995年开始,在国内首先创造性地提出以获得极高力学性能为目标的金属增材成形技术构思,赋予“激光立体成形”之名,依托凝固技术国家重点实验室开展了系统的研究工作,建立起了包含材料、工艺和装备技术的完整的技术体系[13]。经过近20年的研究,针对大型钛合金构件的激光立体成形,解决了大型构件变形控制、几何尺寸控制、冶金质量控制、系统装备等方面的一系列难题,并试制成功C919大飞机翼肋TC4上、下缘条构件,该类零件尺寸达450mm×350mm×3000mm(图4),成形后长时间放置后的最大变形量小于1mm,静载力学性能的稳定性优于1%,疲劳性能也优于同类锻件的性能[15]。此外,在LMD技术零件修复方面也取得了重大进展。TC4激光修复试样在低应变区的疲劳寿命高于锻件,在高应变区低于锻件,经过喷丸处理后及匹配修复后,高应变区疲劳寿命已非常接近锻件;图5所示为航空发动机轴承后机匣激光修复[13,16],通过激光修复轴孔径向缺陷,成形前安装边,恢复零件设计结构及尺寸,为该发动机首次装机试车提供合格零件;此外,还成功的应用于铝合金导向叶片、不锈钢机匣、钛合金压气机静子叶片、镍基合金高压一级涡轮叶片等修复。

<上一页  1  2  3  4  5  6  下一页>  余下全文
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号